Return of rain mouse

In 2014, I reported a remarkable find in The Economist where researchers used a sleeping sickness drug to treat mice suffering from the rodent equivalent of autism. Administration of the drug, known as suramin, caused the autism traits to fade away over a matter of weeks. Similarly, as the drug treatment ended, the autistic traits came back. It was astonishing stuff but my editor and I were cautious in our reporting since what works in mice often does not work in men. Well, humans trials have now finished and the findings suggest that suramin has tremendous potential.

What works in mice is now working in men.Image courtesy of Aaron Logan.

What works in mice is now working in men.

Image courtesy of Aaron Logan.

Like all first trials in humans, this one was small with just ten patients. All were autistic boys. Half were given a placebo and half were given suramin. The participants went through numerous tests throughout the treatment to monitor their behaviours and tease out whether the grip that autism had on them was weakened. All five of the kids who were given the suramin showed substantial gains while the drug was given while none of the children given the placebo did.

Obviously, this is a big deal since there is currently no drug available for treating autism but what these findings suggest from a biochemical perspective is perhaps even more important. Suramin gums up purine receptors on cells and prevents neurons (cells in the brain) in particular from entering what is known as the cellular danger response. While in this defensive mode, neurons become more resistant to a wide range of diseases but stop making connections with other neurons. This is not really a problem when someone is ill for a few days or weeks but the theory with autism is that patients with the condition have neurons that permanently get stuck in the danger response and can't stop responding to purine stimulation. The fact that suramin improves language and social skills in autistic patients while simultaneously decreasing repetitive behaviours suggests that the theory of the cellular danger response being a central cause of autism is likely correct.  

This work has to be replicated before we can take it too seriously but the fact that what works in mice is working in autism sufferers is really something extraordinary. You can read more in The Economist article that I wrote on this here.

How air pollution causes heart disease

That people chronically exposed to severe air pollution develop lung diseases is entirely logical. However, what has been a conundrum is why such patients often succumb to heart disease. Some researchers have theorised that many of the tiny particles found in air pollution are capable of migrating from the lungs to the blood vessels around the heart but evidence for this has been extremely thin. Now a new study is revealing that this is absolutely true. Indeed, the findings are worse than anyone could have imagined, showing that pollutant particles are actually attracted to blood vessels suffering from the sort of inflammation that is typically caused by plaques that build up over years of unhealthy eating. You can read more in The Economist article that I wrote on this here.

Moth larvae that eat plastic

The future of recycling?Image courtesy of D. Hobern.

The future of recycling?

Image courtesy of D. Hobern.

Plastics carry a heavy environmental impact. While roughly 26% of plastic materials are recycled and 36% are burned for purposes of energy recovery, 38% end up lingering in landfills. While many attempts have been made to get various strains of fungi and bacteria to eat this junk, success has been limited due to the colossal amount of time that it takes these tiny organisms to chew plastic up. Now a new experiment is revealing that a far better way forward would be to put moth larvae to the task.

The team behind the new work thought up their experiment while they were studying the moth species Galleria mellonella which is fond of laying its eggs inside the hives of honey bees and chewing up beeswax. Since beeswax and plastic are structurally not too different, the researchers decided to put the larvae on plastic and monitor their behaviour. Remarkably, holes started to appear in 40 minutes. The authors are arguing that the discovery lays the basis for the development of biotechnological applications that could play a pivotal role in management of plastic waste and, frankly, I'm inclined to agree with them. You can read more in The Economist article that I wrote on this here.  Alternatively, if you would like to hear me describe the research on The Economist's science podcast, you can do so here.

Bacterial brain benefits

We know from work done on mice raised in entirely sterile environments that an absence of healthy bacteria leads to changes in how the blood–brain barrier functions. This matters because the barrier plays a critical part in keeping out materials and pathogens that have no business hanging around in the brain. In contrast, administration of probiotics has been shown to restore both intestinal function and brain chemistry. Given these findings, researchers have speculated that concurrent treatment of probiotics while patients are taking antibiotics should ameliorate the damage caused by the antibiotics but evidence for this has been thin. Now a new study conducted in mice is revealing that this is something that is well worth further attention. 

In the new work, researchers dosed baby mice with penicillin one week before birth and then continued giving it to them until they weaned. Throughout this process, they simultaneously monitored the bacteria in their guts, their behaviour and the integrity of their blood brain barriers. Remarkably, they found that, like mice raised in completely sterile environments, the antibiotic-treated mice had lasting changes in the bacteria found in their guts, modified blood brain barrier integrity and showed behavioural changes like increased aggression and reduced sociality. More importantly, they found that the use of probiotics partially prevented these negative effects. You can read more in The Economist article that I wrote on this here.

 

Dragon's blood

A mouthful of promise.Image courtesy of Stafseng Einarsen.

A mouthful of promise.

Image courtesy of Stafseng Einarsen.

In his desperate search to magically extend his life, Qin Shi Huang sought out dragon's blood in the belief that if he could drink some, he would become immune to the illnesses of old age. Remarkably, a new study is now revealing that the blood of dragons truly does have the potential to cure disease.    

Komodo dragons are mildly venomous but they also wield numerous pathogenic bacteria in their saliva. One bite is enough to trigger septic shock within hours in the large mammals that they eat. Thus, a common hunting tactic used by these predators is to bite a deer, back away and then slowly stalk the wounded animal until it falls. This intriguing strategy has raised questions over how the dragons survive with so many pathogenic species in their mouths - especially since dragons routinely bite one another during fights over territory and do not succumb to sepsis themselves. Now a new examination of their blood is revealing that they carry an armada of unique proteins that shield them from infection. 

The team behind the new work identified forty-eight novel antimicrobial proteins. They then ran eight of the most promising looking ones through a series of bacterial exposure tests and found that seven showed serious potency against particularly menacing strains. Dragons appear to be born with the power to resist the very pathogens that they wield and, with a bit of work, it seems likely that we can wield this power too. You can read more in The Economist article that I wrote on this here.